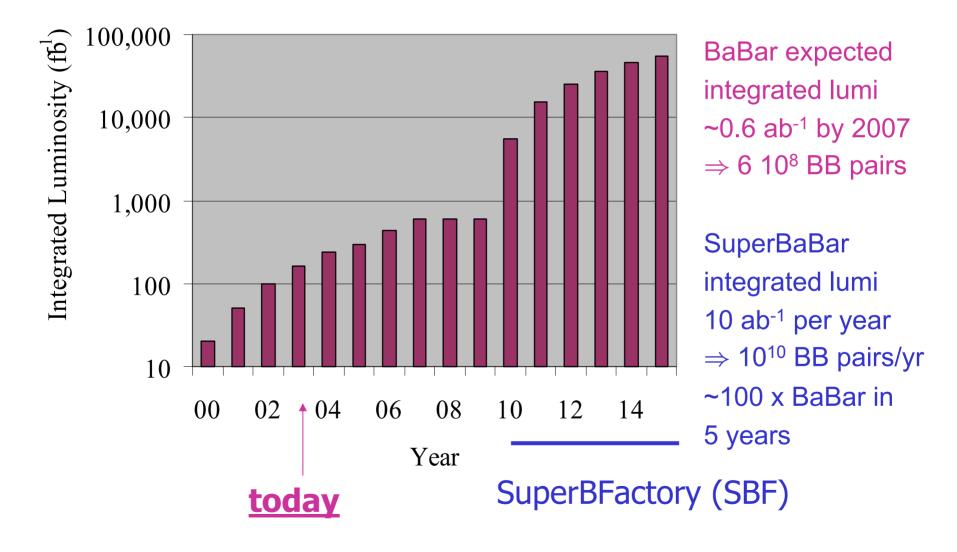
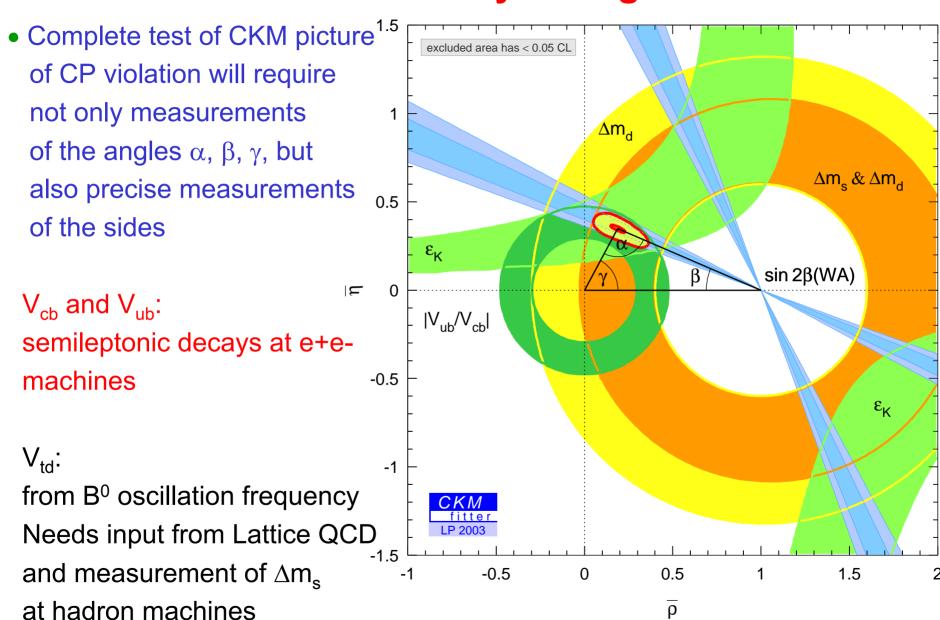
# SuperBaBar Physics Reach

- 1. UT sides
- 2. UT angles
- 3. Rare decays
- 4. Experimental issues

Stéphane Willocq
University of Massachusetts, Amherst


WIN03 Workshop Lake Geneva, 6-11 Oct 2003

Disclaimer: Many studies are still in progress and some are missing


Numbers in this talk are not the final word!

#### **SLAC B Factory Luminosity Projection**

□ Proposed profile: adiabatic PEP-II upgrades until ~2007
Super B Factory with peak luminosity of 10<sup>36</sup> cm<sup>-2</sup> s<sup>-1</sup> in ≥ 2010



#### **CKM Unitarity Triangle**



### UT Sides: |Vtd|

#### • BaBar+Belle **NOW**:

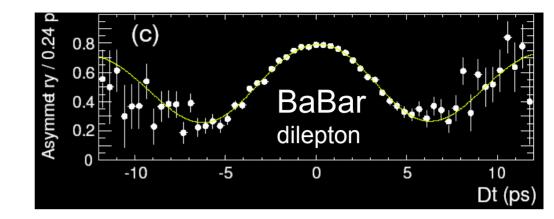
$$\Delta m_d = 0.503 \pm 0.007 \text{ ps}^{-1}$$

→ uncertainty of 1.4%

#### • BaBar/Belle **FUTURE**:

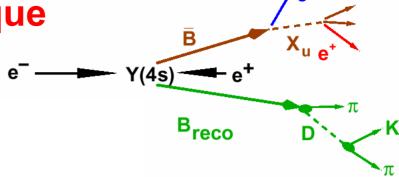
Assume 500 fb<sup>-1</sup> for each expt

Expect total uncertainty of ~0.0023 ps<sup>-1</sup>, i.e. ~0.5%


Completely dominated by systematic uncertainties

#### Extraction of Vtd:

Needs subtantial improvement from Lattice QCD ( $\sigma \sim 15\%$  now)


With a measurement of  $\Delta m_s$  one can reach  $\sigma \sim 5\%$  (within a few years)

*Note*: once  $\Delta m_s$  is measured (1-2 yrs? from now), experimental precision in extracting Vtd is likely to be negligible compared to theory uncertainty



## Vub, Vcb: B-Beam Technique

 Precise measurements of Vub and Vcb require a new approach to significantly reduce systematic (theory) uncertainties



• "B beam" technique:

Fully reconstruct one of the two B mesons

Reconstruct hadronic decay B  $\rightarrow$  D<sup>(\*)</sup> ( $n_1\pi^{\pm} n_2K^{\pm} n_3K^{0}_S n_4\pi^{0}$ )

Breco efficiency = 0.3% for  $B^0\overline{B}^0$  and 0.5% for  $B^+B^-$  events (BaBar)

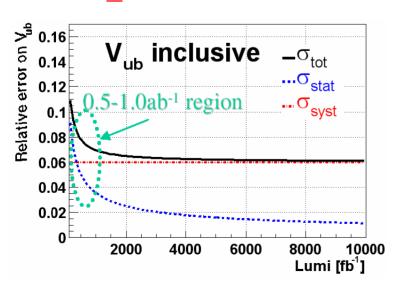
For 10 ab<sup>-1</sup>, this yields ~10<sup>10</sup>  $B\overline{B} \rightarrow 15 \times 10^6 B^0 \overline{B}^0$  reco

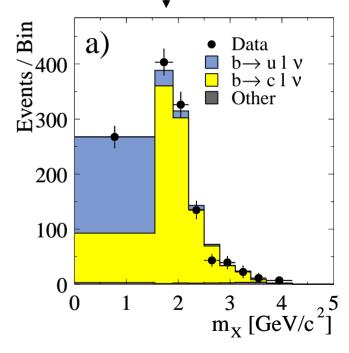
25 x 10<sup>6</sup> B<sup>+</sup>B<sup>-</sup> reco

- → ~40 million B mesons recoiling against fully reconstructed B
- ⇒ Full kinematical constraints available
- ⇒ Separates decay products from the two B mesons & suppresses bkgd
- ⇒ Provides B flavor tag

B beam technique is ideal for inclusive measurements of semileptonic branching fractions  $\rightarrow$  Vcb and Vub

Technique expanded with semil. decays and partially reconstructed decays

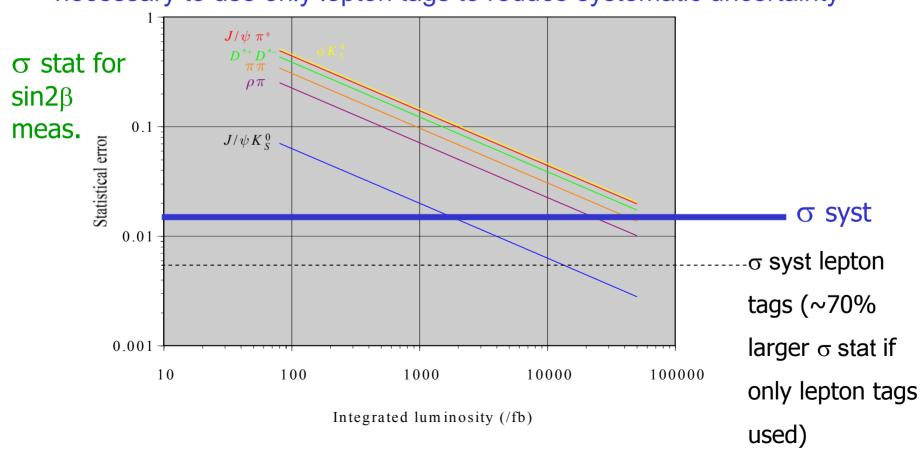

#### Semileptonic decays


Inclusive semileptonic decays:

b  $\rightarrow$  u I  $\nu$  with B beam technique  $\Rightarrow$  high S/B at low hadronic mass m<sub>X</sub> BaBar (82 fb<sup>-1</sup>):

$$|V_{ub}| = (4.62 \pm 0.28(stat) \pm 0.27(syst) \pm 0.48(theo)) \times 10^{-3}$$

Theory uncertainty can be reduced to ~5% by cutting on both  $m_X$  and  $q^2$  but overall uncertainty saturates at 6% for lumi  $\geq$  2 ab<sup>-1</sup>






Further reduction of  $\sigma_{theory}$  possible if  $m_b$  and Fermi motion effects constrained from data

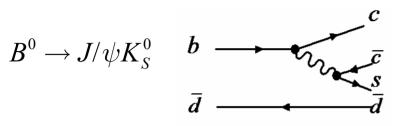
#### Measurements of UT angles

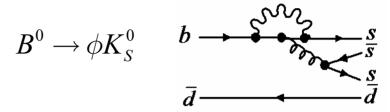
- Projections based on current analyses at BaBar
  - → Uncertainties are mostly statistical and will continue to improve as the sample size increases
  - $\rightarrow$  Only exception may be for  $sin(2\beta)$  in  $B^0 \rightarrow J/\psi \ K^0_s$  for which it may be necessary to use only lepton tags to reduce systematic uncertainty



#### **UT** angles systematics

#### Main systematic uncertainties in time-dependent asymmetries


- 1.  $\Delta t$  resolution: uncertainties due to vtx detector misalignment and beam spot position  $\rightarrow$  reduce with improved understanding of detector
- 2. <u>Dilutions</u>: uncertainties due to difference between flavor-tagged sample and charmonium event sample  $\rightarrow$  only slight improvement
- 3. <u>Background</u>: uncertainties in background composition and asymmetry
  - → sideband data will provide much tighter constraints than currently used
- 4. MC correction: improves with increased MC statistics lepton tags only 50 ab⁻¹ □

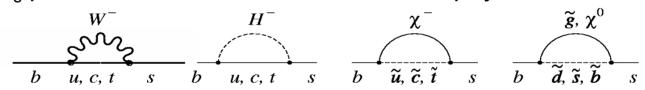

projected σ(syst) for sin 2β measurements

| Component               | $81  {\rm fb}^{-1}$ | $0.5{\rm ab}^{-1}$ | $2.0{\rm ab}^{-1}$ | $10.0{\rm ab}^{-1}$ | leptons |
|-------------------------|---------------------|--------------------|--------------------|---------------------|---------|
| $\Delta t$              | 0.017               | 0.010              | 0.010              | 0.010               | 0.005   |
| Dilutions               | 0.012               | 0.010              | 0.010              | 0.010               | -       |
| Non- $K_L^0$ background | 0.017               | 0.007              | 0.003              | 0.002               | 0.001   |
| $K_L^0$ Background      | 0.015               | 0.006              | 0.005              | 0.005               | -       |
| MC correction           | 0.010               | 0.004              | 0.002              | 0.001               | 0.003   |
| DCSD                    | 0.008               | 0.007              | 0.006              | 0.005               | -       |
| $\tau_B, \ \Delta m_d$  | 0.005               | 0.002              | 0.002              | 0.002               | 0.002   |
| Total Sys               | 0.034               | 0.019              | 0.017              | 0.016               | 0.006   |
| Stat. (golden)          | 0.067               | 0.027              | 0.013              | 0.006               | 0.005   |

#### **Measurements of sin2**β

Compare trees and loops (penguins) in clean modes






$$\sin(2\beta) = 0.741 \pm 0.067(stat) \pm 0.034(syst) = \sin(2\beta) = 0.45 \pm 0.43(stat) \pm 0.07(syst)$$

WAvg:  $0.736 \pm 0.049$ 

$$-0.14 \pm 0.33$$

•  $B^0 \to \phi K_s^0$  provides excellent window into new physics



& current data leaves room for new physics in b  $\rightarrow$  s transitions

- $\Rightarrow$  but low rates due to BF(B<sup>0</sup>  $\to$   $\phi$  K<sup>0</sup><sub>s</sub>) / BF(B<sup>0</sup>  $\to$  J/ $\psi$  K<sup>0</sup><sub>s</sub>)  $\sim$  10<sup>-2</sup>
- ⇒ need very large data samples

10 ab<sup>-1</sup>: 
$$\sigma (\sin 2\beta) < 0.01 [J/\psi K_s^0]$$

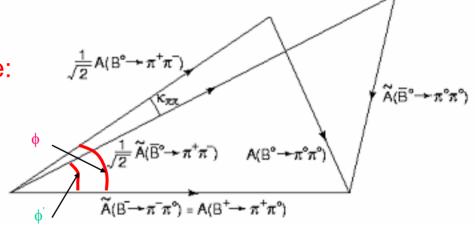
$$\sigma$$
 (sin2β)  $\sim$  0.05 [ $\phi$  K<sup>0</sup><sub>s</sub>]

SuperBaBar could see  $\geq 5\sigma$  deviation from J/ $\psi$  K0 of  $\geq 33\%$  with 10 ab-1

> 15% with 50 ab<sup>-1</sup>

#### Measurements of $\alpha$ (I)

• Measurement of time-dependent CP asymmetry in  $B^0 \to \pi^+\pi^-$ :


$$S_{\pi\pi} = \sqrt{1 - C_{\pi\pi}^2} \sin(2\alpha_{eff}) = -0.40 \pm 0.22 (stat) \pm 0.03 (syst)$$
 BaBar (113 fb<sup>-1</sup>)

$$\Rightarrow \sigma_{stat}(S_{\pi\pi}) = 0.023 \text{ for } 10 \text{ ab}^{-1}$$

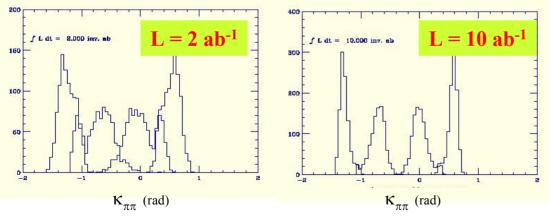
but penguin pollution can be sizeable:

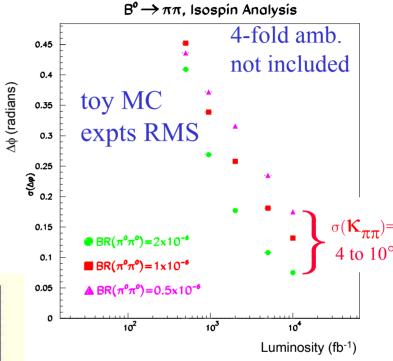
$$2\alpha_{\text{eff}} = 2\alpha + \kappa_{\pi\pi}$$

 $\Rightarrow$  need to measure BF(B<sup>0</sup>  $\rightarrow$   $\pi^0\pi^0$ ), BF(B<sup>0</sup>  $\rightarrow$   $\pi^0\pi^0$ ) and determine  $\kappa_{\pi\pi}$  via isospin analysis



→ e<sup>+</sup>e<sup>-</sup> machines ideally suited for this

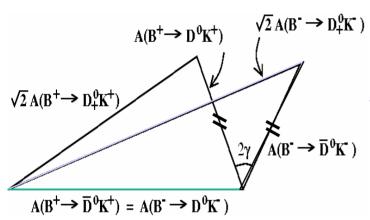

#### Measurements of $\alpha$ (II)


• Toy MC study of isospin analysis in B  $\rightarrow \pi\pi$ :

Several choices of BF were studied

For example, results using

BF(B<sup>0</sup> 
$$\rightarrow \pi^{0}\pi^{0}$$
) = 1.5 x 10<sup>-6</sup>  
BF(B<sup>0</sup>  $\rightarrow \pi^{0}\pi^{0}$ ) = 0.5 x 10<sup>-6</sup>






4-fold ambiguity!

 $\Rightarrow$  really need Super B Factory luminosities for precise and clean determination of  $\alpha!$ 

## Measurements of $\gamma$ (I)



Gronau-Wyler-London method:  $B \to D^0 K$  with  $D^0$  decays to CP even and odd final states

#### $\underline{\sqrt{2} A (B^{-} \rightarrow D^{0}_{+} K)} = \underline{A (B^{-} \rightarrow D^{0} K)} + A (B^{-} \rightarrow \overline{D^{0}} K)$

#### Measure:

$$\frac{\Gamma(B^{-} \to D_{+}K)}{\Gamma(B^{-} \to D_{0}K)} = f^{-}(\gamma, \Delta \delta, r)$$

$$\frac{\Gamma(B^{-} \to D_{0} K)}{\Gamma(B^{-} \to D_{0} K)} = f^{-}$$

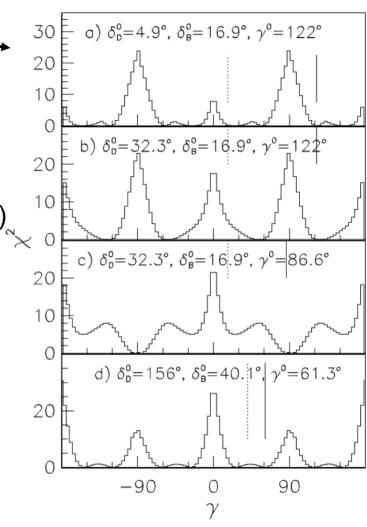
$$\frac{\Gamma(B^+ \to D K)}{\Gamma(B^- \to D_0 K)} = f^+$$

$$\frac{\Gamma(B^+ \to D_+ K)}{\Gamma(B^- \to D_0 K)} = f^+$$

$$r \equiv \left| \frac{A(B^- \to \overline{D}_0 K^-)}{A(B^- \to D_0 K^-)} \right|$$

$$= O(0.1)$$

| 2 ab <sup>-1</sup> |                  |                           |  |  |  |
|--------------------|------------------|---------------------------|--|--|--|
| r                  | $\sin^2\!\gamma$ | γ                         |  |  |  |
| 0.3                | $0.72 \pm 0.13$  | $(58.1 \pm 9.1)^{\circ}$  |  |  |  |
| 0.2                | $0.73 \pm 0.25$  | (59 +23 <sub>-15</sub> )° |  |  |  |
| 0.1                | unreliable       | unreliable                |  |  |  |


- Crucially depends on r (breaks down for r < 0.1?)
- 8-fold ambiguity spoils the extraction of  $\gamma$
- But  $A_{CP} = 2r \sin \Delta \delta \sin \gamma$  is accessible:  $\sigma(A_{CP}) \sim 0.03$  with 2 ab<sup>-1</sup>

#### Measurements of $\gamma$ (II)

- 600 fb<sup>-1</sup>: toy MC study (A.Soffer) \_\_\_\_\_\_
   Combines GWL and ADS methods and uses all D<sup>(\*)</sup>K<sup>(\*)</sup> final states → 8-fold ambiguity!
- 10 ab<sup>-1</sup>: ambiguities can be resolved once sensitivity is high enough (at Super B Factory)

Too early to give firm projection but expect B  $\rightarrow$  D<sup>(\*)</sup>K<sup>(\*)</sup> studies to determine  $\gamma$  with a statistical uncertainty of 1° to 2.5° (for 10 ab<sup>-1</sup>)

- $\underline{\sin(2\beta+\gamma)}$  from  $B^0\to D^{(*)}\pi$  /  $\rho$  /  $a_1$  /  $K^0_s$  main uncertainty in the ratio between \_\_\_\_\_\_ "Vub" and "Vcb" amplitudes
  - $\Rightarrow$  expect uncertainty of 0.05 for 10 ab<sup>-1</sup>



$$r(D^{(*)}\pi) \equiv r_{(*)} = \left| \frac{A(\overline{B}^0 \to D^{(*)-}\pi^+)}{A(B^0 \to D^{(*)-}\pi^+)} \right| \approx 0.02$$

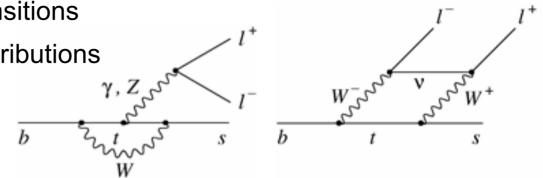
#### Radiative Penguin Decays (I)

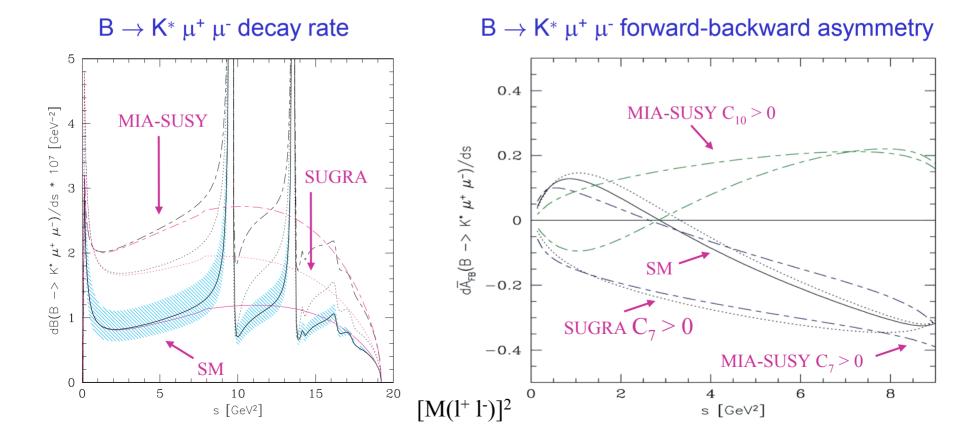
• <u>UT side measurement with **exclusive** decays</u>:

Measure BF(B ightarrow  $\rho$   $\gamma$ )  $\sim$  1 x 10<sup>-6</sup> to extract  $|V_{td}$  /  $V_{ts}|$  via

$$\frac{B \to \rho \gamma}{B \to K^* \gamma} = |\frac{V_{td}}{V_{ts}}|^2 \left(\frac{1 - m_\rho^2 / M_B^2}{1 - m_{K^*}^2 / M_B^2}\right)^3 \zeta^2 [1 + \Delta R]$$

u.c.t


- ightarrow BaBar 500 fb<sup>-1</sup>: Uncertainty in  $|V_{td} / V_{ts}|$  of 10-15%  $[\sigma(theory) \sim 15\%]$  Complementary to  $\Delta m_s / \Delta m_d$  (but remember sin  $2\beta$  in  $\phi$  K<sup>0</sup><sub>s</sub>!)
- $\rightarrow \geq$  10 fb<sup>-1</sup>: Limited by  $\sim$  5% systematic uncertainty + theory  $\sim$  10%?
- UT side measurement with inclusive decays:


BF(B  $\rightarrow$  X<sub>d</sub>  $\gamma$ ) / BF (B  $\rightarrow$  X<sub>s</sub>  $\gamma$ ) yields cleaner  $|V_{td} / V_{ts}|$  [ $\sigma$ (theory) <10%?]

but inclusive B  $\rightarrow$  X<sub>d</sub>  $\gamma$  decays are very difficult experimentally may be possible with >10 ab<sup>-1</sup> and B-beam technique Study with lepton tag (to suppress udsc bkgd) yields  $\sigma_{\text{stat}}$  on  $|V_{\text{td}} / V_{\text{ts}}|$  of 15-20% for 10 ab<sup>-1</sup> and 10-15% for 50 ab<sup>-1</sup>

#### Rare semileptonic decays (I)

• Decays involving  $b \to s l^+ l^-$  transitions are sensitive to new physics contributions



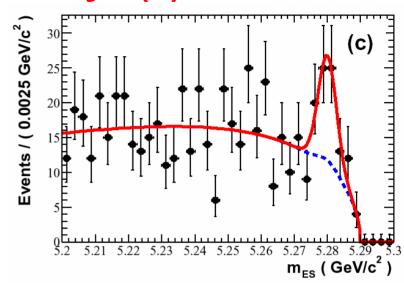


### Rare semileptonic decays (II)

BaBar 82 fb<sup>-1</sup>

• Semi-inclusive analysis:  $B \to X_s I^+ I^-$  decays

BF theory  $\sigma \sim 15\%$  for all  $\hat{s} = m_{\parallel}^2/m_b^2$ 


[6% scale only T.Hurth] (11% U. Haisch)

for  $0.05 < \hat{s} < 0.25$ 

Expect ~350 signal events for 0.5 fb<sup>-1</sup>

~7000 signal events for 10 ab<sup>-1</sup>

Estimate for BF measurement uncertainties:



| Signal yield $X_s e^+e^- + X_s \mu^+\mu^-$ | 500 fb <sup>-1</sup>                                              | 1000 fb <sup>-1</sup>                                            | 10 ab <sup>-1</sup>                                                | 50 ab <sup>-1</sup>                                             |
|--------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|
| All ŝ (exc. J/Ψ veto)                      | $\sigma_{\text{stat}} = 10\%$ $7\% < \sigma_{\text{syst}} < 14\%$ | $\sigma_{\text{stat}} = 7\%$ $5\% < \sigma_{\text{syst}} < 14\%$ | $\sigma_{\text{stat}} = 2.1\%$ 1.5% < $\sigma_{\text{syst}}$ < 6%? | $\sigma_{\rm stat} = 1.0\%$ $0.7\% < \sigma_{\rm syst} < 6\%$ ? |
| 0.05 < \$ < 0.25                           | $\sigma_{\rm stat}$ = 16%                                         | $\sigma_{\rm stat}$ = 11%                                        | $\sigma_{\rm stat}$ = 3.4%                                         | $\sigma_{\rm stat}$ = 1.5%                                      |
| ŝ > 0.65                                   | $\sigma_{\rm stat}$ = 22%                                         | $\sigma_{\rm stat}$ = 15%                                        | $\sigma_{\rm stat}$ = 5.0%                                         | $\sigma_{\rm stat}$ = 2.3%                                      |

⇒ Need Super B Factory to reach (future) theory uncertainty at low \$

#### Rare semileptonic decays (III)

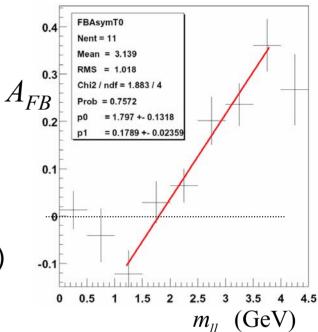
Forward-backward asymmetry in B → X<sub>s</sub> I<sup>+</sup> I<sup>-</sup>

In dilepton rest frame:

$$N_F = \# I^+$$
 along b-quark direction  $N_F = \# I^+$  opposite b-quark dir.  $A_{FB} = \frac{N_F - N_B}{N_F + N_B}$ 

$$N_B = \# I^+$$
 opposite b-quark dir.

Predicted zero point of the asymmetry:


$$A_{FB} = 0$$
 for  $\hat{s} = \hat{s}_0 = 0.162 \pm 0.008$  (NNLL)

Estimate with 10 ab<sup>-1</sup> sample (after bkg subtraction)

$$\rightarrow$$
  $\hat{s}_0 \simeq 0.14 \pm 0.04 (stat)$ 

Estimate for asymmetry measurement ( $\sigma_{\text{stat}}$  only):

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

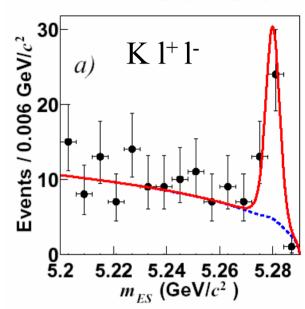


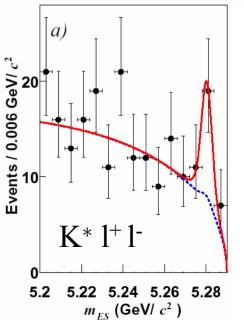
pure signal 10 ab<sup>-1</sup>

| $A_{FB}$ $X_{s} e^{+}e^{-} + X_{s} \mu^{+}\mu^{-}$ | 500 fb <sup>-1</sup> | 1000 fb <sup>-1</sup> | 10 ab <sup>-1</sup> | 50 ab <sup>-1</sup> |
|----------------------------------------------------|----------------------|-----------------------|---------------------|---------------------|
| \$ < \$ <sub>0</sub>                               | -0.02 ± 0.17         | -0.02 ± 0.12          | -0.017 ± 0.039      | -0.017 ± 0.017      |
| \$ > \$ <sub>0</sub>                               | 0.17 ± 0.22          | 0.17 ± 0.16           | 0.173 ± 0.050       | 0.173 ± 0.022       |

⇒ A<sub>FB</sub> clearly needs high-luminosity B Factory

### Rare semileptonic decays (IV)


BaBar 113 fb<sup>-1</sup>


Exclusive analysis: B → K<sup>(\*)</sup> I<sup>+</sup> I<sup>-</sup> decays

Based on current BaBar analysis, expect # signal events for 10 ab<sup>-1</sup> of 2000 for K e<sup>+</sup> e<sup>-</sup> and 1500 for K  $\mu$ <sup>+</sup>  $\mu$ <sup>-</sup> 2600 for K\* e<sup>+</sup> e<sup>-</sup> and 1700 for K\*  $\mu$ <sup>+</sup>  $\mu$ <sup>-</sup>

Current theory uncertainty in BF is ~34%

⇒ main interest is in the forward-backward asymmetry (coming soon...)





#### **Other Measurements**

- Many other physics topics become very interesting at Super B Factory luminosities, for example:
- 1. Rare B decay processes with missing particles:  $B \to \tau \nu$ ,  $K\nu\nu$ ,  $\tau\tau$ ,  $\nu\nu$   $\to$  method like full (or partial) B-beam technique is crucial
- **2.** Radiative penguin B decays: reduced theory dependence in BF measurement of inclusive b  $\rightarrow$  s  $\gamma$  (full or partial B-beam technique)  $\sigma_{tot} \sim 7\%$  (0.5 ab<sup>-1</sup>) and  $\sim 2\%$  (10 ab<sup>-1</sup>) Interesting level of sensitivity for  $A_{CP}$  measurements
- 3. Charm physics: huge samples for D<sup>0</sup> mixing ( $\sigma_x$ ~0.001) and rare D decay studies
- 4. Tau physics: sensitivity for lepton-number violation in  $\tau \to \mu \ \gamma$  (expect  $5\sigma$  sensitivity down to BF of 1 x  $10^{-7}$ )

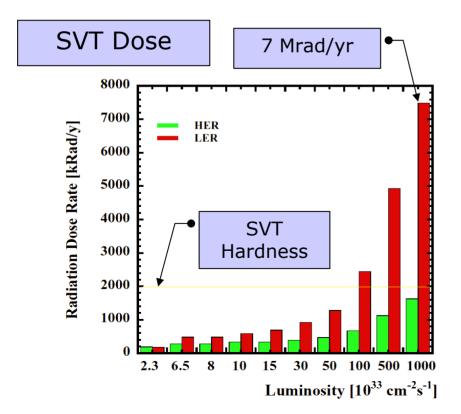
$$\frac{\widetilde{\nu}}{\tau} \times \sum_{\gamma} \chi \times \mu$$

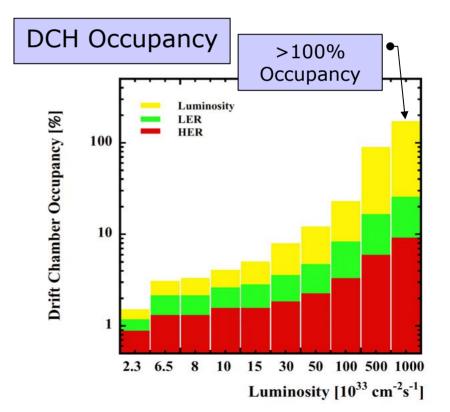
5. Other ideas...

#### **Super B Factory Parameters**

• How do we get a factor of 100 improvement in luminosity?

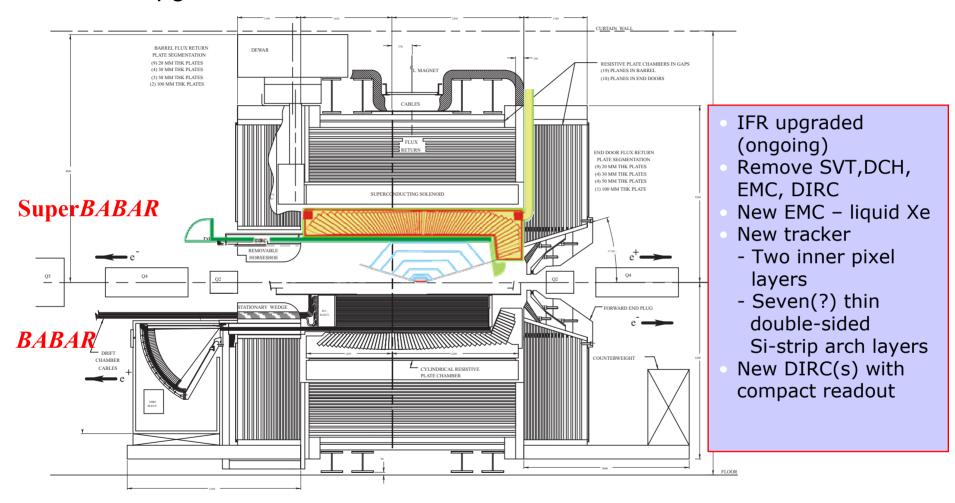
**Super B Factory** 


**B** Factory


| Beam           | e+              | e-   | e-         | e+  |
|----------------|-----------------|------|------------|-----|
| E (GeV)        | 8.0             | 3.5  | 9.0        | 3.1 |
| #bunches       | 7000            |      | 800        |     |
| lifetime (min) | 7               | 5    | 200        |     |
| Current (A)    | 10.3            | 23.5 | 1.0        | 1.8 |
| β* (mm)        | x=150/y=1.5     |      | x=450/y=10 |     |
| Emittance (nm) | x = 44/y = 0.44 |      | 40/2.5     |     |
| Beam spot (µm) | x = 81/y = 0.8  |      | x= 147/y=5 |     |
| Tune shift     | 0.              | 10   | 0.0        | 7   |

### **Super B Factory Environment**

- Reaching 10<sup>36</sup> implies that a series of issues have to be faced:
  - ► Higher beam currents, stronger focusing, continuous injection
  - ► Increased background and higher rates for detector
    - ⇒ Radiation damage
    - ⇒ High occupancy


⇒ NEED NEW DETECTOR





#### **Super BaBar Detector**

Possible upgrade of BaBar detector:



Emphasis on high segmentation, fast integration time, radiation hardness

#### **Detector Issues**

- Super BaBar detector designed to have sufficient granularity to deal with the high occupancy
  - However, some issues need investigating...
    - tracking efficiency and fake tracks
    - calorimeter resolution, fake photons, ability to veto pi0, etc...
    - particle ID performance
    - ▶etc...
  - → studies yet to be performed
- Some detector R&D is needed for:
  - ► thin (100 µm) Si detector and low-power electronics
  - small-cell drift chamber in high radiation environment
  - focusing DIRC with pixelated PMT
  - ► choice of EM calorimeter: liquid Xe vs. (fast) crystals
  - technology for muon ID

### **Summary**

A high-luminosity B Factory promises samples of up to 10<sup>11</sup> B mesons (5 yrs)

Huge range of physics but motivation is discovery/ measurement of new physics via CPV and

rare decays

(many extremely interesting topics and analyses not shown!)

|                                            | BaBar (2007) 600 fb <sup>-1</sup> |                                       | SuperBaBar (2012)   |                          |  |  |
|--------------------------------------------|-----------------------------------|---------------------------------------|---------------------|--------------------------|--|--|
| Lumi                                       |                                   |                                       | 10 ab <sup>-1</sup> |                          |  |  |
|                                            | $\sigma_{stat}$                   | $\sigma_{ m stat}$ $\sigma_{ m syst}$ |                     | $\sigma_{\mathrm{syst}}$ |  |  |
| $\delta \sin 2\alpha_{\rm eff} (\pi\pi)$   | 0.095                             | 0.02-0.03                             | 0.023               | 0.01-0.02(?)             |  |  |
| $\delta \sin 2\alpha_{\rm eff} (\rho \pi)$ | 0.078                             | 0.02-0.03                             | 0.019               | 0.01-0.02                |  |  |
| $BF(B^0 \rightarrow \pi^0 \pi^0)$          | 12%                               | <10%                                  | 3%                  | ?                        |  |  |
| $\delta \gamma (B_d \to DK)$               |                                   |                                       | 1.0°-2.5°           |                          |  |  |
| $\delta \sin(2\beta + \gamma)$             | 0.2                               |                                       | 0.05                |                          |  |  |
| <b>δ sin(2β) φ K</b>                       | 0.19                              | 0.03                                  | 0.046               | 0.01-0.02                |  |  |
| $BF(B\rightarrow X_s l^+l^-)$              | 10%                               | ~10%                                  | 2%                  | ~4%                      |  |  |

Current knowledge (subject to change...)

#### **Additional Slides**

# BTeV / Super B Comparison (D.Hitlin)

| Mode                                      | <i>B</i> TeV | 7      | Super B           |                     |  |
|-------------------------------------------|--------------|--------|-------------------|---------------------|--|
|                                           | Yield        | Tagged | Yield             | Tagged              |  |
| $B_s \rightarrow J/\psi \eta^{(\prime)}$  | 12650        | 1645   | -                 | -                   |  |
| $B^- \rightarrow \phi K^-$                | 11000        | 11000  | 14000             | 14000               |  |
| $B^0 \rightarrow \phi K_s$                | 2000         | 200    | 5000              | 1500                |  |
| $B^0{ ightarrow} K^*\mu^+\mu^-$           | 2530         | 2530   | ~1000             | ~1000               |  |
| $B_s \rightarrow \mu^+ \mu^-$             | 6            | 0.7    | -                 |                     |  |
| $B^0{ ightarrow}\mu^+\mu^-$               | 1            | 0.1    | 0                 | -                   |  |
| $D^{*+} \to \pi^+ D^0, D^0 \to K^- \pi^+$ | ~108         | ~108   | $1.6 \times 10^7$ | 1.6x10 <sup>7</sup> |  |

1-year yields

## BTeV / Super B Comparison (D.Hitlin)

• Number of flavor tagged  $B^0 \rightarrow \pi^+ \pi^- (B=0.45 \times 10^{-5})$ 

|              | $\mathcal{L}$ (cm <sup>-2</sup> s <sup>-1</sup> ) | σ      | $B^0/10^7 { m s}$    | ${\cal E}$ | $\varepsilon D^2$ | Tagged events |
|--------------|---------------------------------------------------|--------|----------------------|------------|-------------------|---------------|
| Super B      | $10^{36}$                                         | 1.1 nb | $1.1 \times 10^{10}$ | 0.45       | 0.26              | 5600          |
| <i>B</i> TeV | $2\times10^{32}$                                  | 100 μb | $1.5 \times 10^{11}$ | 0.021      | 0.1               | 1426          |

• Number of  $B^- \rightarrow D^0 K^-$  (Full product  $B=1.7 \times 10^{-7}$ )

|              | $\mathcal{L}$ (cm <sup>-2</sup> s <sup>-1</sup> ) | σ      | $B^0/10^7$ s         | $\mathcal{E}$ | Events |
|--------------|---------------------------------------------------|--------|----------------------|---------------|--------|
| Super B      | $10^{36}$                                         | 1.1 nb | $1.1 \times 10^{10}$ | 0.4           | 500    |
| <i>B</i> TeV | $2\times10^{32}$                                  | 100μb  | $1.5 \times 10^{11}$ | 0.007         | 176    |

•  $B_S$ ,  $B_C$  and  $\Lambda_b$  studies are not done at Y(4S)  $e^+e^-$  machines



## **Snowmass 2001 E2 Group Comparison**

|                                   | BTeV              | LHCb              | BABAR                  | $10^{35}$         | $10^{36}$         |          |
|-----------------------------------|-------------------|-------------------|------------------------|-------------------|-------------------|----------|
|                                   | $10^7 \mathrm{s}$ | $10^7 \mathrm{s}$ | $\operatorname{Belle}$ | $10^7 \mathrm{s}$ | $10^7 \mathrm{s}$ |          |
|                                   |                   |                   | (2005)                 |                   |                   |          |
| $\sin 2\beta$                     | 0.011             | 0.02              | 0.037                  | 0.026             | 0.008             | Equal    |
| $\sin 2\alpha$                    | 0.05              | 0.05              | 0.14                   | 0.1               | 0.032             | Equal    |
| $\gamma \left[ B_s(D_sK) \right]$ | $\sim 7^o$        |                   |                        |                   |                   | Had      |
| $\gamma [B(DK)]$                  | $\sim 2^{o}$      |                   | $\sim 20^{\circ}$      |                   | $1-2.5^{\circ}$   | Equal    |
| $\sin 2\chi$                      | 0.023             | 0.04              | -                      | -                 | -                 | Had      |
| $BR(B \to \pi^o \pi^o)$           | -                 | -                 | $\sim 20\%$            | 14~%              | 6%                | $e^+e^-$ |
| $V_{ub}$                          | -                 | -                 | $\sim 2.3\%$           | $\sim 1\%$        | $\sim 1\%$        | $e^+e^-$ |
|                                   |                   |                   |                        | (sys)             | (sys)             |          |

#### **UT Angles: Impact of SUSY**

Ratio of amplitudes in SM

 $B \to D^0 \overline{D}^0$ 

Penguin  $\beta$ 

SM phase

Ratio of MSSM/SM amplitudes

0.01 - 0.03

MSSM phase

0.003 - 0.006

| Incl.                             | Excl.                      | $\phi^D_{	ext{SM}}$   | $	au_{	ext{SM}}$ | $\phi^D_{	ext{SUSY}}$  | <b>t</b> <sub>250</sub> | <b>r</b> <sub>500</sub> |
|-----------------------------------|----------------------------|-----------------------|------------------|------------------------|-------------------------|-------------------------|
| $b \to c \overline{c} s$          | $B \to J/\psi K_S$         | 0                     |                  | $\phi_{23}$            | 0.03 - 0.1              | 0.008 - 0.04            |
| $b \rightarrow s\overline{s}s$    | $B \to \phi K_S$           | 0                     | _                | $\phi_{23}$            | 0.4 - 0.7               | 0.09 - 0.2              |
| $b \rightarrow u\overline{u}s$    |                            | Tree $\gamma$         |                  |                        |                         |                         |
|                                   | $B \to \pi^0 K_S$          |                       | 0.009 - 0.08     | $\phi_{23}$            | 0.4 - 0.7               | 0.09 - 0.2              |
| $b \to d\overline{d}s$            |                            | Penguin 0             |                  |                        |                         |                         |
| $b \to c \overline{u} d$          |                            | 0                     |                  |                        |                         |                         |
|                                   | $B 	o D_{CP}^0 \pi^0$      |                       | 0.02             | _                      | _                       | -                       |
| $b \to u \overline{c} d$          |                            | $\gamma$              |                  |                        |                         |                         |
|                                   | $B \rightarrow D^+D^-$     | Tree 0                | 0.03 - 0.3       |                        | 0.007 - 0.02            | 0.002 - 0.006           |
| $b \to c\overline{c}d$            |                            |                       |                  | $\phi_{13}$            |                         |                         |
|                                   | $B 	o J/\psi  \pi^0$       | Penguin $\beta$       | 0.04 - 0.3       |                        | 0.007 - 0.03            | 0.002 - 0.008           |
|                                   | $B \to \phi  \pi^0$        | Penguin $\beta$       | _                |                        | 0.06 - 0.1              | 0.01 - 0.03             |
| $b \rightarrow s\overline{s}d$    |                            |                       |                  | $\phi_{13}$            |                         |                         |
|                                   | $B \to K^0 \overline{K}^0$ | $u$ -Penguin $\gamma$ | 0 - 0.07         |                        | 0.08 - 0.2              | 0.02 - 0.06             |
| $b \to u \overline{u} d$          | $B 	o \pi^+ \pi^-$         | Tree $\gamma$         | 0.09 - 0.9       | $oldsymbol{\phi}_{13}$ | 0.02 - 0.8              | 0.005 - 0.2             |
| $b \to d\overline{d}d$            | $B 	o \pi^0 \pi^0$         | Penguin $\beta$       | 0.6 - 6          | $oldsymbol{\phi}_{13}$ | 0.06 - 0.4              | 0.02 - 0.1              |
|                                   | $B \rightarrow K^+ K^-$    | Tree $\gamma$         | 0.2 - 0.4        |                        | 0.04 - 0.1              | 0.01 - 0.03             |
| $b\overline{d} \to q\overline{q}$ |                            |                       |                  | $\phi_{13}$            |                         |                         |
| • •                               |                            |                       |                  |                        |                         |                         |

only  $\beta$ 

#### Precision on the determination of UT sides

• Snowmass 2001 projections:

|                     | Analysis                | σ <sub>stat</sub> (2007)% | σ <sub>stat</sub> (2012)% | σ <sub>sys</sub><br>(2012)% | σ <sub>th</sub> (>2010) % |
|---------------------|-------------------------|---------------------------|---------------------------|-----------------------------|---------------------------|
| V <sub>cb</sub>     | D(*,**)]v               | 0.4                       | 0.1                       | 1                           | 1                         |
|                     | b →clv                  | 1                         | 0.5                       | 0.5                         | 5                         |
| $\mathbf{V}_{ub}$   | b→ul∨                   | 3                         | 0.7                       | 2.5                         | 5                         |
|                     | $B \rightarrow X_u l v$ | 9                         | 2                         | 2.5                         |                           |
| $\mathbf{V}_{td}$   | $\Delta \mathbf{M_d}^*$ | 0.2                       | 0.05                      | 0.5                         | 5                         |
| $V_{ub}$ , $V_{td}$ | Β→τν                    |                           | seen?!                    |                             |                           |

<sup>\*</sup> best approach with  $\Delta m_s/\Delta m_d$  but could also check with  $\rho$   $\gamma$  / K\*  $\gamma$